Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
نویسندگان
چکیده
This study investigated the therapeutic effects of simvastatin administered by subarachnoid injection after spinal cord injury (SCI) in rats; explored the underlying mechanism from the perspective of mobilization, migration and homing of bone marrow stromal cells (BMSCs) to the injured area induced by simvastatin. Green fluorescence protein labeled-bone marrow stromal cells (GFP-BMSCs) were transplanted into rats through the tail vein for stem cell tracing. Twenty-four hours after transplantation, spinal cord injury (SCI) was produced using weight-drop method (10g 4cm) at the T10 level. Simvastatin (5mg/kg) or vehicle was administered by subarachnoid injection at lumbar level 4 after SCI. Locomotor functional recovery was assessed in the 4 weeks following surgery using the open-field test and inclined-plane test. At the end of the study, MRI was used to evaluate the reparation of the injured spinal cord. Animals were then euthanized, histological evaluation was used to measure lesion cavity volumes. Immunofluorescence for GFP and cell lineage markers (NeuN and GFAP) was used to evaluate simvastatin-mediated mobilization and differentiation of transplanted BMSCs. Western blot and immunohistochemistry were used to assess the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Simvastatin-treated animals showed significantly better locomotor recovery, less signal abnormality in MRI and a smaller cavity volume compared to the control group. Immunofluorescence revealed that simvastatin increased the number of GFP-positive cells in the injured spinal cord, and the number of cells double positive for GFP/NeuN or GFP/GFAP was larger in the simvastatin treated group than the control group. Western blot and immunohistochemistry showed higher expression of BDNF and VEGF in the simvastatin treated group than the control group. In conclusion, simvastatin can help to repair spinal cord injury in rat, where the underlying mechanism appears to involve the mobilization of bone marrow stromal cells to the injured area and higher expression of BNDF and VEGF.
منابع مشابه
Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury
Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...
متن کاملCentral Neuropathic Pain After Graft of Bone Marrow Stromal Cells in the Spinal Cord Contusion of Rat
Purpose: The purpose of this study was the investigation of thermal and mechanical Allodynia after BMSCs grafting in the Spinal Cord Contusion of rat Materials and Methods: In this study used 40 female Sprague- Dawley 6-8 week old that 33 rats received vertebral laminectomy to expose spinal cord (L1 vertebral level). The cord was then contused with the weight drop device. Experimental groups c...
متن کاملA Comparative Study of Therapeutic Benefits of Intraspinal and Intravenous Bone Marrow Stromal Cell Administration to Spinal Cord Injuries
Background: Recent reports demonstrated that intravenous route as a minimally invasive method, similar to direct injection, is suitable for bone marrow stromal cell (BMSC) transplantation. In this study, we made a comparison of intraspinal and intravenous route of BMSC administration to repair injured spinal cord tissue. Methods: Six groups of adult female rats were used in this study. Laminect...
متن کاملImprovement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow
Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 521 2 شماره
صفحات -
تاریخ انتشار 2012